

Ioffe Physico-Technical Institute, St. Petersburg, Russia

Interface-induced lateral anisotropy of semiconductor heterostructures

M.O. Nestoklon,

JASS 2004

Contents

- Introduction
- Zincblende semiconductors
- Interface-induced effects
- Lateral optical anisotropy: Experimental
- Tight-binding method
 - Basics
 - Optical properties in the tight-binding method
- Results of calculations
- Conclusion

Motivation

$$P_{\rm lin} = \frac{I_x - I_y}{I_x + I_y}$$

The light, emitted in the (001) growth direction was found to be linearly polarized

This can not be explained by using the T_d symmetry of bulk compositional semiconductor

Zincblende semiconductors

T_d symmetry determines bulk semiconductor bandstructure

However, we are interested in heterostructure properties.

An (001)-interface has the lower symmetry

Zincblende semiconductors

The point symmetry of a single (001)-grown interface is C_{2v}

Envelope function approach

Electrons and holes with the effective mass

$$\left[-\frac{\hbar^2}{2m^*}\Delta + V(\boldsymbol{x})\right]\psi = E\psi$$

The Kane model takes into account complex band structure of the valence band and the wave function becomes a multi-component column. The Hamiltonian is rather complicated...

Zincblende semiconductor bandstructure

hh, lh holes have the total angular momentum ("spin") $J = \frac{3}{2}$ soh, e have spin $J = \frac{1}{2}$ hh spin projection $l = \pm \frac{3}{2}$ lh, soh, e spin projection $l = \pm \frac{1}{2}$

Rotational symmetry

If we have the rotational axis $C_\infty,$ we can define the angular momentum component ℓ as a quantum number

 $\ell = 0, \pm 1, \pm 2, \pm 3, \dots$ $\ell = \pm 1/2, \pm 3/2, \dots$

 C_n has n spinor representations $D_l(c_n^k) = e^{\frac{2\pi i l}{n}k}$

 $\begin{array}{c|c} C_n \\ & \end{array} \\ \begin{array}{c} The angular momentum can unambiguously be defined only for \\ & \swarrow & \ell = 0, \pm 1, \pm 2, \pm 3, \dots \\ & \ell = \pm 1/2, \pm 3/2, \dots \end{array} \\ \begin{array}{c} -n/2 < \ell \leq n/2 \end{array}$

 $\rm C_{2v}$ contains the second-order rotational axis $\rm C_2$ and *does not* distinguish spins differing by 2

For the C_{2v} symmetry, states with the spin +1/2 and -3/2 are coupled in the Hamiltonian.

Crystal symmetry

As a result of the translational symmetry, the state of an electron in a crystal is characterized by the value of the wave vector \mathbf{k} and, in accordance with the Bloch theorem,

$$\psi_{\boldsymbol{k}}(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}} u_{\boldsymbol{k}}(\boldsymbol{r})$$

Let us remind that \mathbf{k} is defined in the first Brillouin zone. We can add any vector from reciprocal lattice.

$$\boldsymbol{b}_1 = \frac{2\pi}{V} [\boldsymbol{a}_2 \times \boldsymbol{a}_3], \quad \boldsymbol{b}_2 = \frac{2\pi}{V} [\boldsymbol{a}_3 \times \boldsymbol{a}_1], \quad \boldsymbol{b}_3 = \frac{2\pi}{V} [\boldsymbol{a}_1 \times \boldsymbol{a}_2].$$

In the absence of translational symmetry the classification by \mathbf{k} has no sense.

Examples

 Γ -X coupling occurs due to translational symmetry breakdown

Schematic representation of the band structure of the p-i-n GaAs/AlAs/GaAs tunnel diode. The conduction-band minima at the Γ and X points of the Brillouin zone are shown by the full and dashed lines, respectively. The X point potential forms a quantum well within the AlAs barrier, with the Γ -X transfer process then taking place between the Γ -symmetry 2D emitter states and quasi-localized X states within the AlAs barrier.

hh-lh mixing

Type-I and -II heterostrucrures

Type I Type II

The main difference is that interband optical transition takes place only at the interface in type-II heterostructure when, in type-I case, it occurs within the whole CA layer

Lateral anisotropy

$$P_{\rm lin} = \frac{I_x - I_y}{I_x + I_y}$$

type I
$$P_{\rm lin} \sim 10 - 15\%$$
type II $P_{\rm lin} \sim 60 - 80\%$

Optical anisotropy in ZnSe/BeTe

Optical anisotropy in the InAs/AlSb

Situation is typical for type-II heterostructures. Here the anisotropy is $\sim 60\%$

Tight-binding method: The main idea

$$\psi(\mathbf{r}) = \sum_{n,\alpha} C_n^{(\alpha)} \phi_{n\alpha}(x, y, z - z_n)$$

$$E_n^{\alpha}C_n^{\alpha} + \frac{1}{2}\sum_{n'\neq n,\alpha'} V_{n,n'}^{\alpha,\alpha'}C_{n'}^{\alpha'} = EC_n^{\alpha}$$

$$k_x = k_y = 0$$

Optical matrix element

$$\hat{\boldsymbol{v}} = \frac{i}{\hbar} (\hat{\mathcal{H}}\boldsymbol{r} - \boldsymbol{r}\hat{\mathcal{H}}) \qquad v_{\alpha'\alpha}(\boldsymbol{R}', \boldsymbol{R}) = \frac{i}{\hbar} (\boldsymbol{R} - \boldsymbol{R}') H_{\alpha'\alpha}(\boldsymbol{R}', \boldsymbol{R})$$

$$M = \langle \psi^e | \boldsymbol{v} | \psi^h \rangle$$
 $P_{\text{lin}} = \frac{|M_x|^2 - |M_y|^2}{|M_x|^2 + |M_y|^2}$

The choice of the parameters

en3e* Tight hinding noromotors for transport simulations in	Property	AlSb	AlSb	InAs	InA
spos right-binding parameters for transport simulations in		target	TB	target	TE
compound semiconductors	Γ_{6c}	2.300	2.300	0.370	0.368
	Δ_{so}	0.673	0.675	0.380	0.381
GERHARD KLIMECK [†] R. CHRIS BOWEN	m_{Γ}^*	0.120	0.121	0.024	0.024
let Propulsion Laboratory California Institute of Technology Paradena C4 01100 IIS 4	$m_{lh}^*[001]$	-0.123	-0.099	-0.027	-0.028
sei Propuision Luboratory, Caujornia institute oj recinology, Pasadena, CA 91109, O.S.A.	$m_{lh}^{*}[011]$	-0.100	-0.089	-0.026	-0.027
TIMOTHY B. BOYKIN	$m_{lh}[111]$	-0.091	-0.086	-0.026	-0.027
University of Alabama in Huntsville, Huntsville, AL 35899, U.S.A.	$m_{hh}^{+}[001]$ $m^{*}[011]$	-0.330	-0.303	-0.345	-0.364
THOMAS A. CWIK	$m_{hh}[011]$ $m^*[111]$	-0.300	0.032	-0.039	-0.05
FCE Denortment and LICOS. Let Provulsion Laboratory. California Institute of Technology. Pasadana	m_{hh} [111] m^*	-0.872	-0.800	-0.870	-0.883
CA 91109 US A	m so	0.200	-0.170		-0.090
0171107, 0.021.	Δ_{min}	≈0.80	0.849		1.000
(Received 25 February 2000)	E_c^{Δ}	1.615	1.615	2.280	2.345
(m_{Xl}^{-}	1.800	1.576		1.103
	m_{Xt}	0.260	2.734		111
A genetic algorithm approach is used to fit orbital interaction energies of spost tight-	L _{6c}	2.211	2.211	1.500	1.460
and As P. Sh at room temperature. The new parameters are optimized to reproduce the	m_{Ll}^*		24.866		1.852
bandstructure relevant to carrier transport in the lowest conduction band and the highest	m_{Lt}^*		1.125		0.304
three valence bands. The accuracy of the other bands is sacrificed for the better reproduc-	Γ_{6v}	-11.100	-10.975 -	-12.300 -	-12.159
tion of the effective masses in the bands of interest. Relevant band edges are reproduced to	Γ_{7c}	3.740	5.075	4.390	4.126
within a few meV and the effective masses deviate from the experimental values typically	Γ_{8c}	4.000	5.135	4.630	4.543
by less than 10%.	X_{5v}	-6.760	-6.995	-6.600	-7.595
© 2000 Academic Press	X_{6v}	-3.000	-3.192	-2.400	-2.948
Key words: spost tight-binding, genetic algorithm, effective mass, parametrization, III-V	X_{7v}	-2.500	-2.858	-2.400	-2.836
	X _{6c}	1.615	1.632	2.300	2.345
	A7c	5.020	2.614	2.500	2.849
	L_{5v}	-0.250	-7.100	-6.230	-7.062
		-1.450	-1.015	-1.200	-1.399
	L_{v}	-1.000	-1.225	-0.900	-1.144
	LIC	4.400	5.470	5.400	5./13

The choice of the parameters

Electron states in thin QWs

FIG. 10: Electron localization energy for a GaAs QW in a GaSb matrix. The solid curve represents the data obtained within the Kane model and open squares show the results of the tight-binding calculation.

A.A. Toropov, O.G. Lyublinskaya, B.Ya. Meltser,
V.A. Solov'ev, A.A. Sitnikova, M.O. Nestoklon, O.V. Rykhova,
S.V. Ivanov, K. Thonke and R. Sauer, *Phys. Rev* B, submitted (2004)

Lateral optical anisotropy Results of calculations

Conclusion

- A tight-binding approach has been developed in order to calculate the electronic and optical properties of type-II heterostructures.
- the theory allows a giant in-plane linear polarization for the photoluminescence of type-II (001)-grown multi-layered structures, such as InAs/AlSb and ZnSe/BeTe.

Electron state in a thin QW

The main idea of the symmetry analysis

 $\hat{\mathcal{H}}\psi = E\psi$

If crystal lattice has the symmetry transformations gThen the Hamiltonian is invariant under these transformations:

 $\hat{\mathcal{D}}(g)\hat{\mathcal{H}}(g^{-1}\boldsymbol{r})\hat{\mathcal{D}}^{-1}(g) = \hat{\mathcal{H}}(\boldsymbol{r})$

where $\hat{\mathcal{D}}(g)$ is point group representation

Time inversion symmetry

$$\mathcal{K}\psi = -i\hat{\sigma}_y\psi^*$$

$$\left|\pm\frac{1}{2}\right\rangle \rightarrow \left|\mp\frac{1}{2}\right\rangle$$
$$\left|\pm\frac{3}{2}\right\rangle \rightarrow \left|\mp\frac{3}{2}\right\rangle$$

Basis functions

- Для описания экспериментальных данных необходим
 - учёт спин-орбитального расщепления валентной зоны
 - для описания непрямозонных полупроводников "верхние орбитали" (s*)

$$\begin{split} |\Gamma_{6},1/2\rangle &=\uparrow S , \\ |\Gamma_{8},-3/2\rangle &=\downarrow \frac{X-\mathrm{i}Y}{\sqrt{2}} , \\ |\Gamma_{8},1/2\rangle &=\sqrt{\frac{2}{3}} \uparrow Z - \downarrow \frac{X+\mathrm{i}Y}{\sqrt{6}} , \\ |\Gamma_{7},1/2\rangle &=\frac{1}{\sqrt{3}}[\uparrow Z + \downarrow (X+\mathrm{i}Y)] , \\ |\Gamma_{6}^{*},1/2\rangle &=\uparrow S^{*} , \end{split} \begin{aligned} |\Gamma_{6},-1/2\rangle &=\downarrow S^{*} , \\ |\Gamma_{6},-1/2\rangle &=\downarrow S^{*} , \\ |\Gamma_{6},-1/2\rangle &=\downarrow S^{*} , \end{aligned}$$

~ 20-зонная модель. 15 параметров

Hamiltonian matrix elements

$$\hat{E}_{b} = \frac{1}{2} \begin{bmatrix} E_{sb} & 0 & 0 & 0 & 0 \\ 0 & E_{pb} + \frac{1}{3}\Delta_{b} & 0 & 0 & 0 \\ 0 & 0 & E_{pb} + \frac{1}{3}\Delta_{b} & 0 & 0 \\ 0 & 0 & 0 & E_{pb} - \frac{2}{3}\Delta_{b} & 0 \\ 0 & 0 & 0 & 0 & E_{s^{*b}} \end{bmatrix}$$

$$\hat{V}_{2l-1,2l} = \frac{1}{2} \begin{bmatrix} V_{ss} & 0 & \eta V_{sc,pa} & \xi V_{sc,pa} & 0 \\ 0 & V_{xx} & -\xi V_{xy} & \eta V_{xy} & 0 \\ -\eta V_{sa,pc} & -\xi V_{xy} & V_{xx} & 0 & -\eta V_{s^{*a,pc}} \\ -\xi V_{sa,pc} & \eta V_{xy} & 0 & V_{xx} & -\xi V_{s^{*a,pc}} \\ 0 & 0 & \eta V_{s^{*c,pa}} & \xi V_{s^{*c,pa}} & 0 \end{bmatrix}$$

where
$$\eta = \sqrt{2/3}, \, \xi = \sqrt{1/3}.$$

$$\begin{split} \{\hat{V}_{2l-1,2l-2}\}_{\alpha,\alpha'} &= (1-2\delta_{\alpha,\alpha'})\{\hat{V}_{2l-1,2l}\}_{\alpha,\alpha'} ,\\ \{\hat{V}_{2l,2l-1}\}_{\alpha,\alpha'} &= \{\hat{V}_{2l-1,2l}\}_{\alpha',\alpha} ,\\ \{\hat{V}_{2l,2l+1}\}_{\alpha,\alpha'} &= (1-2\delta_{\alpha,\alpha'})\{\hat{V}_{2l-1,2l}\}_{\alpha',\alpha} . \end{split}$$

Optical matrix elements

$$V_l^x = \hat{C}_{2l-1}^{c,A\dagger} \hat{V}_{x1} \hat{C}_{2l}^{v,B} + \hat{C}_{2l}^{c,A\dagger} \hat{V}_{x2} \hat{C}_{2l-1}^{v,B} ,$$

$$V_l^y = \hat{C}_{2l+1}^{e,A\dagger} \hat{V}_{y1} \hat{C}_{2l}^{v,B} + \hat{C}_{2l}^{e,A\dagger} \hat{V}_{y2} \hat{C}_{2l+1}^{v,B} .$$

$$\hat{V}_{x1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -V_{sc,pa} & \xi V_{sc,pa} & -\eta V_{sc,pa} & 0\\ -V_{sa,pc} & 0 & \eta V_{xy} & \xi V_{xy} & -V_{s^*a,pc} \\ \xi V_{sa,pc} & -\eta V_{xy} & 0 & -V_{xy} & \xi V_{s^*a,pc} \\ -\eta V_{sa,pc} & -\xi V_{xy} & V_{xy} & 0 & -\eta V_{s^*a,pc} \\ 0 & -V_{s^*c,pa} & \xi V_{s^*c,pa} & -\eta V_{s^*c,pa} & 0 \end{bmatrix}$$

$$\hat{V}_{y1} = \frac{i}{\sqrt{2}} \begin{bmatrix} 0 & -V_{sc,pa} & -\xi V_{sc,pa} & \eta V_{sc,pa} & 0\\ -V_{sa,pc} & 0 & -\eta V_{xy} & -\xi V_{xy} & -V_{s^*a,pc} \\ -\xi V_{sa,pc} & \eta V_{xy} & 0 & -V_{xy} & -\xi V_{s^*a,pc} \\ \eta V_{sa,pc} & \xi V_{xy} & V_{xy} & 0 & \eta V_{s^*a,pc} \\ 0 & -V_{s^*c,pa} & -\xi V_{s^*c,pa} & \eta V_{s^*c,pa} & 0 \end{bmatrix}$$

$$\hat{V}_{x2} = \tilde{\hat{V}}_{x1}, \ \hat{V}_{y2} = \tilde{\hat{V}}_{y2}$$